Modulo 3: studio dei tempi di lavorazione

Questo studio ha l'obiettivo di stabilire la durata media di ogni operazione durante la lavorazione di un pezzo per programmare la produzione e determinare il costo finale dei prodotti.

Il tempo T necessario per completare una fase di lavorazione può calcolarsi con la seguente formula

$$T = t_m + t_a + \frac{t_{pm}}{N}$$

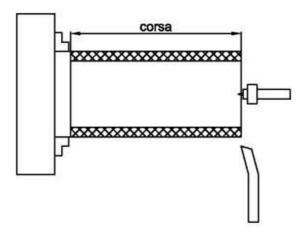
dove: t_m =tempo macchina; corrisponde alla durata di ogni lavorazione t_a =tempi accessori: sono i tempi in cui non si ha avanzamento della produzione t_{pm}/N =rapporto tra il tempo di preparazione macchina e il numero di pezzi prodotti

Il tempo macchina si ricava con la seguente espressione

$$t_m = \frac{C}{V_a}$$

dove: C è la corsa, ovvero lo spostamento che deve fare l'utensile o il pezzo, a seconda del tipo di macchina

V_a è la velocità di avanzamento


Nelle lavorazioni automatiche questi parametri sono entrambi misurabili quindi è possibile calcolare la somma di tutti i tempi macchina presenti all'interno di una fase.

I tempi accessori (t_a) dipendono dalle azioni compiute manualmente dall'operatore; per determinarli in genere viene fatta una stima o vengono usate delle tabelle.

Il tempo di preparazione macchina (t_{pm}) viene anch'esso stabilito grazie ad una stima basata su misurazioni fatte in precedenza durante operazioni analoghe.

Vediamo ora alcuni esempi di calcolo dei tempi macchina sulle principali macchine utensili.

<u>Tornitura</u>: in questo caso la corsa C è la lunghezza del tratto da tornire in ogni singola operazione

mentre la velocità di avanzamento Va è data dal prodotto

Rev. 03/03/2019

 $V_a = a \cdot n$ [mm/min]

dove: a= avanzamento; è lo spostamento nella direzione dell'asse del pezzo che l'utensile compie durante una rotazione completa del pezzo [mm/giro] n= velocità di rotazione del pezzo [giri/min]

I valori di a ed n vengono ricavati nel modo seguente:

- 1) determinare il tipo di tornitura (esterna, interna, ecc.), la profondità di passata (p) e il diametro esterno (d) del pezzo da lavorare
- 2) con i dati determinati al punto 1) e la tabella degli avanzamenti

Tornitura: valori indicativi per l'avanzamento a (mm/giro)								
Lavorazione	Profondità di passata p	Diametro d						
		<30	30-100	100-300	>300			
Tornitura esterna	>4	0,25	0,35	0,5	0,7			
	0,5-4	0,2	0,3	0,4	0,6			
	<0,5	0,1	0,15	0,2	0,25			
Tornitura interna	>3	0,2	0,25	0,35	0,5			
	0,5-3	0,15	0,25	0,35	0,4			
	<0,5	0,05	0,1	0,2	0,2			
Attestatura	>0,5	0,1	0,2	0,4	0,5			
	<0,5	0,05	0,1	0,2	0,3			
Taglio		0,03	0,05	0,08	0,1			
Gole		0,03	0,05	0,08	0,1			

determinare il valore dell'avanzamento (a)

⁴⁾ a seconda del materiale da lavorare e della sezione del truciolo (q) con la tabella delle velocità di tornitura ricavare la velocità di taglio (V_t)

Tornitura: V _t indicativa per utensili in HSS (m/min)							
Matariala	Sezione del truciolo (mm²)						
Materiale	<0,2	0,2-1	1-3	3-6			
Acciaio R<500	80	72	56	48			
Acciaio 500 <r<800< td=""><td>60</td><td>52</td><td>44</td><td>36</td></r<800<>	60	52	44	36			
Acciaio R>800	48	44	40	32			
Ghisa HB<150	64	52	40	32			
Ghisa HB>150	48	40	30	26			

Rev. 03/03/2019 2

³⁾ calcolare la sezione del truciolo (q) moltiplicando la profondità di passata (p) per l'avanzamento (a)

Bronzo e ottone	160	120	88	60
Leghe Leggere	240	160	120	80
Legno	480	320	240	160

5) una volta ricavata la velocità di taglio V_t posso ricavare il numero di giri ottimale n con la formula

$$n = \frac{1000 V_t}{\pi d}$$

dove V_t=velocità di taglio [m/min] d=diametro [mm]

6) infine se il tornio non è a velocità variabile impostare la velocità di rotazione disponibile immediatamente inferiore alla velocità calcolata al punto 5; tale velocità sarà quella da utilizzare nella formula

$$t_m = \frac{C}{V_a}$$

per calcolare il tempo macchina t_m durante l'operazione di tornitura

[continua...]

Rev. 03/03/2019